Введение   Главы  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24   Приложения  1  2  

Типичное контекстное дерево в системе MYCIN ([Buchanan and Shortliffe, 1984])



Типичное контекстное дерево в системе MYCIN ([Buchanan and Shortliffe, 1984])

Типичное контекстное дерево в системе MYCIN ([Buchanan and Shortliffe, 1984])

Теперь предположим, что применяется сформулированное выше правило. Нам требуется определить степень уверенности в выполнении всех трех перечисленных в нем условий применительно к данным, представленным в ОРГАНИЗМ-1. Степень уверенности в выполнении первого условия равна 1.0, второго — 0.8, а третьего — 0.6. Степень уверенности в выполнении совокупности условий принимается равной минимальному из значений, характеризирующих отдельные компоненты, т.е. 0.6.

В качестве оценки достоверности совокупности принимается минимальное значение по той причине, что рассчитывать на выполнение всех условий вместе можно не более, чем на выполнение самого "ненадежного" из них. Здесь очень уместна аналогия с цепочкой, прочность которой не может быть выше прочности самого слабого ее звена. Можно рассмотреть и обратный случай: какова степень уверенности в невыполнении совокупности условий? Она равна максимальному из значений, характеризующих невыполнение отдельных компонентов. Сформулированные выше соглашения легли в основу методики формирования неточных суждений, так называемой нечеткой логики, о которой мы поговорим в главе 9.

В данном случае мы приходим к заключению, что микроорганизм, описанный в узле ОРГАНИЗМ-1, относится к классу энтеробактерий со степенью уверенности, равной 0.6 х 0.8 = 0.48. Сомножитель 0.6 — это степень уверенности в выполнении совокупности условий, перечисленных в правиле, а 0.8 — степень уверенности в том, что правило дает правильное заключение, когда все означенные в нем условия гарантированно удовлетворяются. За сомножителями и результатом этого выражения закрепился термин коэффициента уверенности (CFcertainty factor). Таким образом, в общем случае имеем:

СF(действие) = СF(предпосылка) х СРF(правило)

Более подробно о коэффициентах уверенности мы поговорим в главах 9 и 21, где основное внимание уделяется теме представления неопределенности. Коэффициенты уверенности имеют много общего с оценками вероятности, но между этими двумя понятиями есть и определенные различия. Свойства этих коэффициентов не всегда подчиняются правилам теории вероятности и, таким образом, с математической точки зрения вероятностями не являются. Но методы вычисления коэффициентов уверенности некоторой совокупности правил или действий по коэффициентам уверенности, характеризующим отдельные компоненты в этой совокупности, в значительной мере напоминают методы вычисления вероятности сложных событий по вероятностям совершения событий-компонентов.




- Начало - - Назад - - Вперед -