интернет магазин forekc.ru

проститутки питера метро академическая

Введение в экспертные системы

При подготовке материала автор старался прежде всего учесть интересы и пожелания читателей четырех основных категорий:
  • рядовых читателей, желающих познакомиться с новым классом информационных систем на достаточно высоком теоретическом и техническом уровне;
  • преподавателей и студентов, которым необходимо учебное пособие, охватывающее все основные темы исследования и проектирования экспертных систем, причем глубина изложения материала должна соответствовать программам старших курсов вузов и первого года обучения в аспирантуре;
  • инженеров-программистов, нуждающихся в практическом руководстве по экспертным системам, подкрепленном достаточно солидным теоретическим материалом;
  • научных работников и студентов, активно занимающихся научной работой, которых особенно интересует обзорный материал, касающийся новейших тенденций в разработке систем такого рода.
Это введение послужит методическим руководством для каждой из перечисленных категорий

Введение

1. Что такое экспертная система?
Экспертная система может полностью взять на себя функции, выполнение которых обычно требует привлечения опыта человека-специалиста, или играть роль ассистента для человека, принимающего решение. Другими словами, система (техническая или социальная), требующая принятия решения, может получить его непосредственно от программы или через промежуточное звено — человека, который общается с программой. Тот, кто принимает решение, может быть экспертом со своими собственными правами, и в этом случае программа может "оправдать" свое существование, повышая эффективность его работы.

2. Обзор исследований в области искусственного интеллекта
Что такое искусственный интеллект? Барр и Файгенбаум предложили следующее определение, которое никем не оспаривается почти два десятка лет [Barr and Feigenbaum, 1981]. "Искусственный интеллект (ИИ) — это область информатики, которая занимается разработкой интеллектуальных компьютерных систем, т.е. систем, обладающих возможностями, которые мы традиционно связываем с человеческим разумом, — понимание языка, обучение, способность рассуждать, решать проблемы и т.д."

3. Представление знаний
В этой главе описана одна из первых экспертных систем, MYCIN, при разработке которой была предпринята попытка отойти от традиции использования "обобщенного решателя проблем". Система построена на основе относительно несложного алгоритма поиска, значительно более простого, чем описанный в предыдущей главе алгоритм А. Возможности программы определяются не столько реализованным в ней алгоритмом поиска, сколько методикой представления знаний, специфических для той области, в которой предполагалось использовать систему, а именно — в лечении заболеваний крови.

4. Символические вычисления
Прежде чем приступить в обсуждению специализированных языков представления знаний, остановимся на более общей теме языков программирования задач искусственного интеллекта. В этой главе мы не задавались целью научить читателя пользоваться определенным языком, а стремились познакомить с некоторыми темами, касающимися представления и управления, которые имеют отношение к программной реализации экспертных систем. Интересно отметить, что широко распространившийся в современной практике создания программного обеспечения объектно-ориентированный подход к анализу и разработке должен привести к определенному сближению методик решения проблем, предполагающих использование идей искусственного интеллекта и не предполагающих такового. Кроме того, представление приложения как совокупности взаимодействующих относительно автономных модулей очень близко к подходу, реализуемому методами искусственного интеллекта.

5. Системы, основанные на знаниях
В области искусственного интеллекта и в современной психологии утверждение, что разумное поведение направляется правилами, превратилось уже в аксиому. Даже в "большом" мире люди склонны связывать уровень интеллектуальности со следованием правилам, и мы все чаще при объяснении разумности обращаем внимание на то, насколько при этом соблюдаются правила. Возьмем для примера манеру разговаривать на естественном языке. Мы все ведем себя так, как если бы обладали знанием всех правил того языка, на котором говорим, например английского, хотя, конечно, мы знаем далеко не все. (Любой, кто запишет эти правила, может рассчитывать на ослепительную карьеру в лингвистике.)

6. Ассоциативные сети и системы фреймов
Следуя Нильсону [Nilsson, 1982], я буду использовать термин структурированный объект по отношению к любой схеме представления, базовые блоки которой аналогичны узлам и дугам в теории графов или слотам и заполнителям структур записей. Я буду систематически сравнивать этот вид представления со схемами, производными от правил формальных грамматик или формализмов разнообразных логик. Представление с помощью структурированных объектов является весьма удобным средством для группирования информации более или менее естественным путем.

7. Объектно-ориентированное программирование
За последние 20 лет было разработано довольно много языков для представления знаний, причем большинство из них можно отнести к классу объектно-ориентированных. Как и в случае с использованием концепции фреймов, основная идея состоит в том, чтобы заключить данные и связанные с ними процедуры в некие структуры, объединенные механизмом наследования. Отличие от формализмов, описанных в предыдущей главе, состоит в том, что процедуры могут наследоваться (и комбинироваться) точно так же, как и данные, а объекты могут взаимодействовать друг с другом напрямую или посредством специальных протоколов обмена сообщениями.

8. Логическое программирование
Еще в конце 1970-х годов стала отчетливо просматриваться тенденция к использованию в исследованиях в области искусственного интеллекта "формальных" методов, т.е. основанных на аппарате математической логики. Эти методы противопоставлялись более интуитивным и менее формализованным эвристическим методам, скажем, таким, которые были использованы в системе MYCIN. Для того чтобы стало ясно, что все это значит, нужно познакомить вас с логическими языками, а затем показать, как соотносятся их свойства с теми методами рассуждений, которые должны поддерживать типовые экспертные системы.

9. Представление неопределенности знаний и данных
Во многих реальных приложениях приходится сталкиваться с ситуацией, когда автоматический решатель задач имеет дело с неточной информацией. В этой главе мы рассмотрим основные идеи, касающиеся количественной оценки неопределенности и методов формирования нечетких суждений. В главах 11-15 будет продемонстрировано, как такие методы используются на практике. В настоящей главе речь пойдет в основном о теоретических аспектах представления неопределенности и о том, почему в исследованиях по искусственному интеллекту такое большое внимание уделяется этим проблемам.

10. Приобретение знаний
Термин приобретение знаний носит обобщенный характер и совершенно нейтрален к способу передачи знаний. Например, передача может осуществляться с помощью специальной программы, которая в процессе обработки большого массива историй болезни устанавливает связь между симптомами и заболеваниями. А вот термин извлечение знаний (knowledge elicitation) относится именно к одному из способов передачи знаний — опросу экспертов в определенной проблемной области, который выполняется аналитиком или инженером по знаниям. Последний затем создает компьютерную программу, представляющую такие знания (или поручает это кому-нибудь другому, обеспечивая его всей необходимой информацией).

11. Эвристическая классификация (I)
Если уж технология экспертных систем должна иметь солидный теоретический базис, то необходимо представлять себе, почему эта технология оказывается работоспособной при решении одних задач и неработоспособной при решении других. С практической точки зрения ответы на поставленные вопросы помогут разработчикам экспертных систем принять правильное решение и таким образом избавят их от крушения надежд и разочарования, которыми часто сопровождается ошибочный выбор. В этой главе читатель найдет следующий материал.

12. Эвристическая классификация (II)
Мы начали обсуждение методов решения проблем с эвристической классификации по той причине, что этот метод наиболее понятный. В следующих главах будут рассмотрены другие, более сложные методы, и вы сможете сравнить их. Но в этой главе мы будем считать, что метод решения проблем выбран, а наша задача — проанализировать процесс выбора инструментальных средств для проектируемой экспертной системы и средств приобретения знаний.

13. Иерархическое построение и проверка гипотез
В данной главе будут рассмотрены три системы, реализующие комбинированный метод решения проблем, который получил в литературе наименование иерархического построения и проверки гипотез (hierarchical hypothesize and test). С методом эвристической классификации этот метод сходен в том, что в нем используется отображение множества абстрактных категорий данных на множество абстрактных категорий решений, но этот подход усложнен тем, что элементы решений могут комбинироваться и объединяться в составные гипотезы. Цель такого усложнения — построение гипотезы, которая могла бы объяснить все симптомы и признаки анализируемой ситуации.

14. Решение проблем конструирования (I)
Можно рассматривать задачу решения проблемы конструирования и в терминах ограничений — сформировать такое решение, которое удовлетворило бы некоторым общим требованиям к качеству и при этом не противоречило бы ни одному из специальных правил, отвергающих определенные элементы решения или их комбинации.

15. Решение проблем конструирования (II)
В предыдущей главе мы рассматривали экспертные системы для решения проблем конструирования, в которых по ходу процесса никогда не возникала необходимость отмены уже принятых решений. Однако такая стратегия подходит далеко не для всех задач конструирования, поскольку мы не всегда располагаем всеми необходимыми для этого знаниями о предметной области. В этой главе мы проанализируем применение двух стратегий — наименьшего принуждения (least commitment) и предложение и пересмотр (propose and revise). Завершит главу обзор некоторых инструментальных средств приобретения знаний, которые используются в системах решения проблем конструирования.

16. Средства формирования пояснений
Эту главу мы начнем с краткого обзора ранних работ, касающихся включения в экспертные системы специальных средств, формирующих для пользователя информацию о ходе рассуждений (в дальнейшем для краткости мы будем называть ее поясняющей информацией). Затем более детально будут рассмотрены средства формирования пояснений экспертной системы CENTAUR, о которой уже упоминалось в главе 13. И в заключение мы обсудим одно из последних исследований в этой области, выполненное в рамках проекта Explainable Expert Systems, в котором основное внимание было уделено обеспечению прозрачности экспертной системы с точки зрения инженеров по знаниям, т.е. была предпринята попытка рассмотреть в комплексе вопросы формирования поясняющей информации и извлечения знаний.

17. Инструментальные средства разработки экспертных систем
Как и в предыдущих главах, при необходимости проиллюстрировать те или иные методы программирования мы пользуемся языком CLIPS, хотя вы встретите и несколько фрагментов программ на других языках. Более сложные и специализированные инструментальные средства, в частности системы с доской объявлений и системы обработки правдоподобия, будут детально рассмотрены в главах 18 и 19. В этой же главе мы представим общие тенденции в разработке и использовании инструментальных средств для построения экспертных систем.

18. Системы с доской объявлений
В последние годы в разработке архитектуры экспертных систем появилось новое направление, которое получило название системы с доской объявлений (blackboard sys-tems)u. Системы с такой архитектурой могут эмулировать режим построения как прямой цепочки логического вывода, так и обратной, а также попеременно применять эти режимы в процессе работы. Кроме того, применение систем с доской объявлений побуждает инженеров по знаниям к иерархической организации и знаний относительно предметной области, и пространства частичных и полных решений. Таким образом, эта архитектура очень хорошо подходит для решения задач проектирования, для которых характерно большое, но факторизуемое многомерное пространство решений. Системы с подобной архитектурой уже успешно применяются для интерпретации данных (например, распознавания графических изображений и речи), анализа и синтеза многокомпонентных структур (например, структуры протеинов) и планирования.

19. Система отслеживания истинности предположений
В этой главе мы в общих чертах представим вычислительные методы, которые используются для отслеживания зависимостей между представлением в программе состояний, действий и предположений. Начнем мы с относительно простых систем, затем перейдем к более сложным. Там, где без этого можно обойтись, мы будем пренебрегать строгими математическими формулировками и заменять их менее формальным описанием того, что делается в системе, почему делается именно так и какую пользу из этого можно извлечь.

20. Формирование знаний на основе машинного обучения
За последние 10 лет в области исследования методов формирования знаний на основе машинного обучения (в дальнейшем для краткости мы будем употреблять термин машинное обучение — machine learning) наблюдается бурный прогресс. Но мы не будем в этой главе делать широкого, а следовательно, и поверхностного обзора имеющихся работ, а сконцентрируемся на тех методах, которые имеют прямое отношение к проблематике экспертных систем

21. Сети доверия
В этой главе мы рассмотрим два количественных метода реализации логических рассуждений при наличии неопределенности в структурированном пространстве гипотез, базирующихся на теории свидетельств Демпстера—Шефера [Gordon and Shortliffe, 1985] и Байесовском формализме [Pearl, 1986]. Каждый из этих подходов предполагает, что на множестве гипотез каким-то способом определена функция доверия (belieffunction), а затем по мере накопления новых свидетельств применяется специфический механизм обновления текущего множества допущений.

22. Рассуждения, основанные на прецедентах
Если прецедент — это модуль знаний, который может быть считан программой, то в чем его отличие от других способов представления знаний, множество которых мы уже рассмотрели в этой книге? Самый короткий ответ на этот вопрос — прецедент, как правило, реализуется в виде фрейма (см. главу 6), в котором структурированы информация о проблеме, решение и контекст. Так же, как фрейм или порождающее правило, описание прецедента может быть сопоставлено с данными или описанием цели. Но для извлечения описания прецедента из базы таких описаний используется совсем другой механизм, чем для извлечения фрейма или порождающего правила.

23. Гибридные системы
Системы, которые мы рассмотрим в этой главе, ознаменовали дальнейшее продвижение по этому пути — в них объединяются традиционные программы решения проблем и компоненты самообучения и критического анализа. Система ODYSSEUS [Wilkins, 1990] способна обучаться тому, как уточнять базу знаний. Для этого используются две разные методики: одна основана на анализе прецедентов, а вторая — на анализе пояснений. Обе методики являются сравнительно новыми, и читатель сможет вкратце ознакомиться с ними в данной главе. Далее будет описана программа, в которой логический вывод на основе прецедентов используется для обработки исключений из правил, а основным инструментом решения проблем являются порождающие правила.

24. Заключение
В этой главе мы еще раз вспомним темы, рассмотренные в данной книге, и порекомендуем, что нужно прочесть тем, кто пожелает еще глубже изучить их. Обзор организован таким образом, что в нем в сжатом виде будет суммирован материал, разбросанный по разным разделам. В ходе изложения тех или иных тем вам встретятся ссылки на предыдущие главы, но я старался не злоупотреблять ими. В этой главе представлены некоторые прогнозы дальнейших путей развития исследований в области искусственного интеллекта и, в частности, экспертных систем, которые могут послужить материалом для последующей очной или заочной дискуссии. Эти прогнозы представляют мое личное мнение, если только не оговорено обратное, и читатели вольны отнестись к ним с известной долей скептицизма.

ПРИЛОЖЕНИЕ. Программирование на языке CLIPS
Это Приложение организовано следующим образом. В разделе А.2 рассмотрены основные функции языка описания правил и процедурного языка. В разделе А.З представлены методы работы с объектами и показано, как использовать их в сочетании с правилами и процедурами. В разделе А.4 описан пример, демонстрирующий некоторые приемы программирования правил, а в разделе А.5 резюмируются характеристики этого программного продукта и предлагаются темы для более углубленного изучения.

Содержание
Литература
Статьи

XML - статьи

Интеграция разнородных гетерогенных данных является одной из старейших задач в области разработки баз данных и информационных систем. Кратко, проблема может быть сформулирована следующим образом.
Предположим, имеются несколько гетерогенных источников данных, которые каким-то образом связаны на логическом уровне. Имеется задача предоставить программное обеспечение, которое обеспечивало бы возможность унифициро-ванного доступа к этим данным, как будто бы они имели единое логическое и физическое представление. Мы не будем обосновывать очевидную важность этой проблемы.
Существуют два фундаментальных подхода к решению этой проблемы. Первый подход связан с построением хранилищ данных, когда интегрируемые данные из разных источников трансформируются в соответствии с целевой моделью данных и помещаются в одну локальную базу данных.

Архитектура и структура системы
Что такое язык BPML
Полезные советы для работы с XML
Рабочая группа
Язык MDDL - "освободитель" данных о рынках
Разоблачение мифов и заблуждений о XQuery
Международная организация OASIS: сообщество рабочих групп
Структура класса повторяет структуру XML-документа
PMML: возможности data mining для всех?
Профилирование XML-схемы
Выражение семантики данныхRDF против XML
Что такое RSS?
RSS - новости с доставкой на дом
Принципы проектирования XML-схем: нужны ли производные сложные типы
XML-СХЕМАЧАСТЬ 0: ПРИМЕР
Инициатива SDMX: новые подходы к обмену статистическими данными
SDMX-ML - XML-формат обмена статистическими данными и метаданными
Будущее Web - за семантикой
"Подчистите" свою схему для SOAP
Фрагмент кода разработанной таксономии
Обзор XML-стандартов, Базовые XML-стандарты- основа основ
Хранение XML данных (Storing XML Data)
"Распутывание" URI, URL и URN
Определение совместимости
Международный консорциум W3C: от Рабочего проекта до Рекомендации
Windows Installer XML: создание файлов инсталляции
Импорт формата полезной нагрузки в случае использования описаний сообщений document/literal
Что нового в WSDL 2.0
Предварительное знакомство с WS-I Basic Profile 1.1
Финансовые отчеты: структура и данные
Язык запросов к совокупности XML-документов, соединенных при помощи ссылок языка XLink
Связи в XML: XLink (часть 2)
Управление данными XML: подходы к определению документов XML
Элементы или атрибуты?
Стоит ли отменять пространства имен XML?
XML-RPC: вызов процедур посредством XML
XML-стандарты: работа не прекращается
Ориентированные на приложения методы хранения XML-данных
Структурные ограничения XML
Что следует знать об этих спецификациях
Что такое XML Sapiens
Спецификация и форматы обмена данными в разнородных информационных системах на базе XML-технологий
XML и XSLT в примерах для начинающих
World Wide Web Консорциум, 14 января 1999 года
Оптимизация вычисления обратных осей языка XML Path при его реализации функциональными методами
W3C XML: XQuery от экспертов
Реализация XSL-преобразований при разработке сайтов с XML-наполнением страниц
Листинг 2 Описание типов в XML-схеме

*